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Abstract

This paper describes a system that semi-automatically
builds a virtual world for remote operations by
constructing 3-D models of a robot’s work environment.
With a minimum of human interaction, planar and quadric
surface representations of objects typically found in man-
made facilities are generated from laser rangefinder data.
The surface representations are used to recognize complex
models of objects in the scene. These object models are
incorporated into a larger world model that can be viewed
and analyzed by the operator, accessed by motion planning
and robot safeguarding algorithms, and ultimately used by
the operator to command the robot through graphical
programming and other high level constructs. Limited
operator interaction, combined with assumptions about the
robots task environment, make the problem of modeling
and recognizing objects tractable and yields a solution that
can be readily incorporated into many telerobotic control
schemes.

1 Introduction

Numerous teleoperation tasks require manipulators to
move objects and position end effectors; typically, the
operator utilizes 2-D data from a suite of video cameras to
plan and execute tasks. The reliance on cameras limits the
effectiveness of such teleoperated systems because video
images provide only 2-D information. For many complex
tasks, 3-D information is vital.

Previous work uses a variety of sensors and
representations to construct models of interior workspaces.
Christensen [1] describes a supervised teleoperated system
with a world model that includes a priori knowledge, the
robot configuration, and information gathered by the
robot’s sensors. The world model allows the operator to
preview the operation, have the computer automatically
plan an end-effector trajectory, and view the task from
many different viewing positions. Trivedi [2] reports on
another model-based system using range sensors; this
system allows testing of robot plans in simulation.
Azarbayejani  [3] has a system to semiautomatically
construct CAD models from uncalibrated video images.
Thayer [4] computes an object’s location and orientation

using stereo vision; the operator performs the stereo
matching of some points on the object and the system
computes the pose of the object.

These and other modeling systems share common
characteristics that justify their development:

1.They serve as a graphical aid to the operator by allowing
viewing the robot and its workspace from many more
angles than are possible with on-board cameras.

2. They store knowledge of the world in the form of a mathe-
matical model; this capability is essential for automatic
planning agents.

3. They augment uncertain or unrecorded a priori information
with up-to-date in situ data.
The system we describe generates 3-D models of man-

made environments from laser rangefinder data to produce
a virtual 3-D world for the human operator. This capability
is critical for future efforts in which teleoperated systems
evolve into telerobotic and autonomous systems.

2 Telerobotics and 3-D object modeling

The Department of Energy has declared that robots
and remote systems will play crucial roles in future
decontamination and decommissioning (D&D) of nuclear
weapons facilities [5]. Mobile worksystems will be used in
the near term for selective equipment removal, in which
some part of an apparatus is extricated while minimally
disturbing the surrounding objects. An example of a mobile

Figure 1: The Rosie Mobile Worksystem removing a section of
pipe (left). The IODOX facility, a DOE test site for selective
equipment removal (right).



worksystem is “Rosie,” an advanced prototype for testing,
evaluating and demonstrating robotic selective equipment
removal[6]. Rosie includes a locomotor, a heavy
manipulator, an operator control center, and a control
system for robot operation. An key component of the
operator control center is the 3-D object modeling and
recognition system. Figure 1 shows the worksystem
cutting and removing a section of pipe using the DOE dual-
arm work module, Rosie’s principal payload. A facility
representative of those in which Rosie and other
worksystems will operate is shown in Figure 1. The near
term goal of the work described herein is to enable
dismantlement of such facilities using telerobotic control
schemes that provide substantial productivity gains relative
to baseline teleoperation. Accurate 3-D object modeling is
the essential foundation for telerobotic planning and
motion control.

Our modeling system is a combination of sensors,
modeling and analysis software, and an operator interface
that creates 3-D models of indoor man-made environments
as they are discovered. The interactive system described
performs the following functions:

1.Acquire 3-D scene data in the form of range images.
2. Select a region of interest in each range image.
3. Generate a surface mesh within the region of interest.
4. Segment mesh into planar and quadric surfaces patches.
5. Match surface patches to object models for object recogni-

tion.
6. Incorporate object models into robot’s world model.

A block diagram of the above operations and data flow is
shown in Figure 2. Automatic actions are shown on the
left while operator interactions are given on the right. The
remainder of this paper details these steps and concludes
with a detailed description of the propagation of errors
through the system

3 Data acquisition

The sensor used in our experiments is a 3-D scanning
laser rangefinder manufactured by Perceptron, Inc. It
acquires 256 x 256 pixel range and intensity images over a
vertical and horizontal field of view of 60 degrees at a
frame rate of 2 Hz. The scanner’s range is 2 to 40 meters
and its range precision is 5-7 cm [7]; the sensor that will be
used in the final system will have much better accuracy and
precision. To map a facility, the scanner is remotely
positioned by a mobile worksystem and commanded by the
human operator to acquire a sequence of images. Linear
fitting of image data at known range values is used to
calibrate the sensor for range scale and offset due to
temperature drift of the sensor which improves the range
accuracy to the centimeter range. The range and intensity
images acquired are displayed on the operator’s console.
Figure 3 shows a sample image and reflectance image pair
taken at our experimental test site.

To focus the system on specific objects in the scene to
be analyzed, the operator selects a rectangular region of
interest in the image. This limits the amount of data to that

which is important to recognizing the objects of interest.
Figure 3 shows a region of interest (interior of the white
rectangle in the range image) selected by an operator
interested in determining the position of the t-joint and
diagonal pipe imaged by the sensor.

Once the region of interest is determined a spatial
smoothing filter is applied to eliminate outliers while
preserving range discontinuities. The resulting range image
is then converted from spherical sensor coordinates(ρ,θ,φ)
to cartesian world coordinates(x,y,z). To group points into
surface patches, a surface mesh is created that establishes
the local connectivity of the points in space based on the
connectivity of pixels in the range image. Nearest
neighboring range points are connected if the distance
between them is less than a specified threshold. (this
preserves range step discontinuities when converting from
the sensor to world coordinates). The resulting set of
connected points constitutes a surface mesh in cartesian
space which is used in all subsequent processing stages.

Figure 4 shows the surface mesh generated from the
region of interest selected in Figure 3. For presentation
purposes, the two pipes that form a T-joint are labelled
“T1” and “T2”; the pipe beneath (and occluded by) the T-
joint is labelled “P” and the two prominent flat regions are
labelled “F1” and “F2”.

4 Object representation

We have chosen a surface based object representation
(as opposed to volume based) because we are building
world models which will be used to plan complex tasks. A
volume based representation is not sufficient for planning
tasks such as grasping an object, applying a surface
coating, or obtaining a sample. The robot workspace
contains large numbers of man-made objects with fairly
simple geometries but with complex arrangements and
numerous interconnections (e.g., Figure 1). Curved
objects, such as pipes and vessels, can be concisely
modeled withquadric surfaces - second order surface
descriptions having ten parameters, while flat objects, such
as walls, floors and support structures can be modeled with
planar surfaces. Quadric and planar surfaces are suitable

Range Image

Region of Interest

Cartesian Surface Mesh

Segmented Mesh

Recognized Objects

selection

transformation

segmentation

confirmation

World Model

recognition

Viable Objects

Figure 2: Modeling system block diagram.



descriptions for 3-D modeling of man-made interiors
because their parametric representations do not vary when
surfaces are partially occluded or the sensing viewpoint
changes. Furthermore, the position and orientation of
surface patches in the scene can be easily computed from
their corresponding parameters.

In the remainder of this paper the following notation
will be used. A 3-D pointx lies on a planar surface with
surface normaln and cartesian distanced from the origin of
the world coordinate frame if it satisfies:

(1)

A 3-D pointx lying on a quadric surface satisfies:

(2)

whereA is a 3x3 matrix describing the curvature of the
surface,B is a 3x1 matrix describing the position of the
quadric with respect to the world coordinate system origin,
andd is a scalar related to the size of the quadric.

5 Segmentation

Our segmentation method is based on surface meshes
that group range points into surfaces and is independent of
the means by which the range data is collected as long as
the data is transformable into a mesh representation. This is
attractive as it allows the use of the range sensing modality
(structured light, depth from focus, laser rangefinding,
stereo vision, etc.) that is best suited to the task
environment. Though the results described herein are based
on meshes obtained from single range images, the
technique can be applied to data obtained from multiple
views or different sensors. Substantial performance
improvements through reducing the effects of occlusions,
isolated range errors and increasing the sensor field of view
are thus possible. A general surface mesh segmentation
technique is essential to realizing these benefits.

The similarity measure for segmentation in our
algorithm is the proximity of the points to planar or quadric
surfaces in the scene. The segmentation groups points into
surface patches which are described by a set of points and
the best fit parameters of the surface fit to the points. This

Figure 3: Range image and selected region of interest (left)
and reflectance image (right) of experimental testbed.
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parametric description of surface patches makes the task of
object recognition more efficient.

Our algorithm, which is based on the algorithm for
segmenting range images presented by Faugeras and
Hebert [8], is presented in detail in [9]. It is a generalization
of their technique because it performs the segmentation
using the arbitrary connectivity of a surface mesh.
Furthermore, the similarity measure that defines when to
merge two regions can be easily changed to measure any
property of the surface.

The first stage in the algorithm segments a mesh into
planar surface patches using global region growing.
Initially, each point in the mesh is considered a region; the
two regions with the minimum merge error given by

(3)

where i is over point in both regions are merged. This
merging continues until the total merge error exceeds
some user defined threshold. The result is a set of planar
surface patches on the surface mesh.

The algorithm for creating quadric surface patches is
very similar to that used to generate planar surface patches.
First, quadric patches are generated from each sufficiently
large planar patch by calculating the quadric parameters of
each patch. Then the two quadric patches with the
minimum merge error given by

(4)

are merged. This merging continues until the total merge
error exceeds some user defined threshold.

The result of the segmentation is a set of quadric and
planar surface patches. Figure 5 shows the result of
applying the segmentation to the mesh given in Figure 4.
The points that lie on the curved surfaces in the scene have
been merged into single curved quadric surfaces (T1,T2,P)
while points lying on flat surfaces have been merged into
planar surfaces (F1,F2), not quadric surfaces. Points that lie
on different pipes of the T-joint have not been merged
because they belong to the distinct quadrics. The two
patches that lie on P have not been merged due to the
occlusion by the pipe T-joint in the foreground.

The increased utility of performing the segmentation
on a surface mesh comes at the cost of added
representational complexity of the data in the algorithm.

Figure 4: Result of constructing a surface mesh from the
region of interest shown in Figure 3.
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The surface mesh and the region adjacency graphs must be
represented with undirected parameterized graphs to
describe their full 3-D connectivity. Segmentation
techniques based on images can use simple functions to
access pixels, while lookup functions on graphs are
complicated to ensure efficiency.

6 Object recognition

The purpose of the mesh segmentation is to group
points in the scene into higher level constructs that can be
used more efficiently by the object recognition system. The
basic purpose of the object recognition system is to locate
models of objects in the scene. To make object recognition
tractable, the system relies on the nature of the structured
environment to limit the number of possible objects in the
scene, and on operator interaction to verify the location of
the objects found by the computer. First, the operator
selects one or more object types he recognizes in the region
of interest from a menu of objects in a library. Then, the
object recognition module searches for these models in the
scene. When a model is found, it is presented to the
operator for verification before being inserted into the
world model at the pose computed by the object
recognition module. The human interaction is limited to
selecting the objects to look for and verifying their location
once they are found. The object recognition methodology
presented, mentioned by Besl in [10], relies on aligning
principal directions of the scene patches with principal
directions of model patches to compute a transformation.

6.1 Matches between quadrics

Our object recognition system determines the
transformation between a model surface patch represented
by a set of surface parameters and a scene surface patch
represented by a set of surface parameters and a set of
points that are grouped by the patch.

In the first case, we will consider a match between a
model quadric patch, denoted with subscriptm, and a scene
quadric patch, denoted with subscripts. Suppose that the
scene patch corresponds to a rotated and translated version
of the model patch. Then there exists some rotation R and
translationT such that

Figure 5:  An oblique view of the final planar and quadric
surface patches. Prominent patches are identified with labels
given in Figure 4.
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from which can be derived

(6)

(7)

(8)

The eigenvectors ofAm correspond to the principal
directions of the model quadric and the eigenvectors ofAs
correspond to the principal directions of the scene quadric.
If the two patches match each other then Equation 6 states
that theR must rotate the principal directions of the scene
patch onto the principal directions of the model patch. It is
unknown which principal directions in the model
correspond to which principal directions in the scene, so
there exists six possible rotations that will rotate the model
principal directions onto the scene principal directions.
These rotations are generated by matching eigenvectors of
the model patch to eigenvectors of the scene patch. The
eigenvectors of the scene and the model have arbitrary
signs (i.e., they can point in either direction along the
principle axes of the quadric), so for each of the six
transformations that align the principle axes of the quadrics
there exist four different rotations. Hence, there exists
twenty four possible rotations for the transformation of
model to scene. Once the twenty four matches between
model and scene eigenvectors have been enumerated, the
corresponding twenty four rotation matrices are generated
using the quaternion representation presented in [8].

For each of these twenty four rotations, Equation 7 is
solved forT, resulting in twenty four (R,T) pairs. For each
of the (R,T) pairs the new quadric parametersAm′, Bm′ and
dm′ of the rotated model patch are calculated from the left
hand sides of Equation 6, 9 and 10. The best (R,T) pair for
the match is then selected as the one that minimizes the
match error measure

(9)

for all of the points in the scene patch. In the ideal case,
where scene points lie on a rotated and translated version
of model patch, the best (R,T) pair will setAm′, Bm′ and
dm′ equal toAs, Bs andds respectively, and Equation 9 will
equal zero. This match error measure will reward transfor-
mations that transform the model patch parameters to sim-
ilar values as the scene patch parameters and will penalize
ones that do not. Note, however, that the match error mea-
sure does not give the Euclidean distance between the
scene points and the rotated model patch.

Each possible rotation results from pairing axes along
the principal directions of the scene patch with axes along
the principal directions of the model patch. Amatch
between a scene patch and a model patch will consist of the
pairings of these axes, the transformation that maps the
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model patch to the scene patch and the match error. In the
case of a non-singular model quadric, the match contains
three axis pairs.

Special cases occur when the principal directions of a
quadric are ambiguous due to an axis of symmetry. These
special cases are dealt with thoroughly, but limited paper
space precludes presenting the details.

6.2 Matches between planes

The procedure for finding the best transformation
between a model planar patch and a scene planar patch is
similar to that presented for quadric patches. Suppose that
the planar scene patch corresponds to a rotated and
translated version of the planar model patch. Then there
exists some rotation R and translationT such that

(10)

from which can be derived

(11)

(12)

Equation 11 requires the rotationR to rotate the unit scene
normal to the unit model normal. This rotation is the rota-
tion aboutnm x ns by an angle cos-1(nt

m ns). The appropri-
ate translationT can be determined by fixing two
coordinates ofT and solving for the third using Equation
12. The ambiguity in the scene surface normal is elimi-
nated by forcing the inner product between the scene sur-
face normal and the ray from the sensor to be positive.
Similar to the case of matching quadrics, the rotated model
plane parametersnm anddm are calculated from the left
hand sides of Equation 11 and 13 and the match error for a
model and scene planar patch is

(13)

A match between a model planar patch and a scene patch
will have one axis match, the normals of the scene and
model patches.

Any model planar patch can be transformed exactly to
any scene planar patch, so Equation 13 will always be zero
when only two planar patches are matched. However,
complex objects will have more than one plane making an
exact transformation less common when more than one
model plane is matched to the scene.

6.3 Searching for complex objects

Single quadric or planar surfaces are sufficient for
modeling simple objects like walls and pipes but are not
sufficient for modeling more complex objects. Fortunately,
models of complex objects which are prevalent in man-
made environments, like pipe joints, I-beams and holding
vessels, can be created by grouping together multiple
planar and quadric surfaces. This representation conveys
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only the surfaces that make up a model and not does not
represent the boundaries between surfaces in a model, so
explicit connectivity between surfaces is not represented.
However, for locating the pose of objects in the scene, this
representation is sufficient. The size of the model is explicit
in the parameters of the surface that make up the model, so
different models must be created for similar objects of
varying size. Searching for models made from multiple
surfaces in the scene relies on the techniques presented for
finding a match between single surfaces as presented in the
previous two sections.

The model in the scene is found by matching model
patches to scene patches and computing the transformation
of the model from the match. First, the model patch with
the highest discernability (a measure based on the size of
the patch and its ability to fix the pose of the patch in the
scene) M1 is matched to each scene patch and the
transformations between scene and model patches are
computed. Matches with errors (as given by Equation 9 and
Equation 13) that are below a pre-determined match error
threshold are inserted onto a list of feasible matchesF
because they are good matches between the parameters of
the model patch and the points grouped by the scene patch.
All of the other matches are eliminated.

Next, the model patchM2 with the second highest
discernability is matched to every patch in the scene and
the transformations and the match errors between scene
patches andM2 are computed. Of these matches, the ones
with errors below the match error threshold are kept in a
temporary list of feasible matchesF2. Then each match in
F2 is combined with each match inF by concatenating the
lists of axis pairs of each match. The rotations, translations
and match errors of the combined matches are computed as
explained below. The combined matches with match errors
below the match error threshold are inserted intoF. This
process of creating matches continues, in the order of
discernability, until all of the patches in the model have
been searched for in the scene. At the end of the search,F
will contain all full and partial feasible matches between
the model and the scene.

The best rotationR for a combined match maps the
axes of the model patches to the axes of the matched scene
patches. It is found by minimizing the rotation error:

(14)

em
i are the model patch axes

es
i are the scene patch axes

The best translation of the combined patch is found by
manipulating Equation 7 and Equation 12 into the forms

(15)
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respectively. Then for each match between quadric
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patches in the match, the three equations that satisfy Equa-
tion 15 are created, and for each match between planar
patches in the match Equation 16 is created. These sets of
equations are stacked to create one matrix equation that
can be solved forT using singular value decomposition.
SVD will produce the best solution in a least squares sense
even when there are less than three axes matches which
are required to fully determine the transformation.

The match error for a combined match is computed as
the sum of the match errors as found from Equation 9 and
Equation 13 for each match between patches in the
combination.

Once all of the feasible matches have been found for
the model in the scene, the best one is shown to the user in
its calculated pose for verification. If the user believes that
the model is in its correct pose, the model is accepted and
it is inserted into the robots world model. This user
verification eliminates the need for computer reasoning
about feasible matches that would be required in a
completely automatic object recognition system. The next
best feasible match is presented to the user and the
verification process is repeated until the user is satisfied
with the modeling or the list of feasible matches is
exhausted. This procedure is repeated for each model
selected by the user. Figure 6 shows a located model pipe t-
joint (made from two quadric surfaces) matched to scene
patches T1 and T2, and a pipe (made from one quadric
surface) matched to scene patch P superimposed on the
mesh from Figure 4. The pose of each model comes from
the best match of model to scene.

The combinatorial explosion of the search space is
limited because after each model patch is searched for in
the scene only the matches with a low error when combined
with matches on the list of feasible matches are kept.
Because the match error is low when patches are proximal
in pose space, this is a form of a rigidity constraint. In
addition to rigidity constraints, constraints on the surface
area and curvature of patches that are matched are
employed to limit the number of matches between a single
model patch and the scene patches. The curvature
constraint has been implemented by deciding which
patches in the scene correspond to planes (by comparing

Figure 6:  Oblique view (top) and sensor view (bottom) of the
location of recognized objects superimposed on the surface
mesh from Figure 4.

the eigenvalues of the inertia matrix of the patch) and only
matching planar model patches to planar scene patches and
quadric model patches to quadric scene patches. The
surface area constraint has been rudimentarily
implemented by requiring that scene patches have a
minimum surface area before being considered for
matching

7 World Model

The final step in the modeling process is to present
useful geometric information to the human operator. A
virtual 3-D world provides richer understanding of the
environment than 2-D camera data. To effectively convey
a view of the robot in its workspace and the recognized
objects a commercial robot simulation package,
TELEGRIP from Deneb Robotics Inc., is used. This
package allows viewing of the synthetic scene from any
angle, manipulator path-planning, and off-line simulation
of robot actions. The pre-stored model of the robot vehicle,
manipulators and tooling is updated with the sensor-based
models as they are constructed.A representative view of the
robots world model is given in Figure 7.

8 Error modeling

The accuracy of the world model dictates the possible
functions the operator can perform with the virtual world
and the extent to which the sensed world geometry can be
trusted as a basis for automatic motion and task planning.
To perform a task, the operator must understand accuracy
and errors that are present in the modeling process.
Modeling the sources and propagation of errors through the
system characterizes the errors present in the system and
helps the operator to make decisions on what tasks are
possible, given the current sensing conditions. Ultimately
these errors depend on the error of individual points sensed
in the scene and the errors in the control of the manipulator
that performs the task. In the current scenario, the location
of a pointPo

r with respect to a coordinate system attached
to a manipulator is specified based on sensor data. For
example,Po

r is the location to which the manipulator must

Figure 7:  TELEGRIP model of robot workspace.



move in order to cut a pipe. In this casePo
r would have

been computed by fitting a surface to data points
segmented out of a range image. Because of noise in the
sensors, inaccuracies in the control of the manipulator and
calibration errors, the manipulator is actually going to
move to a different positionP′r = Po

r + ε. The goal of this
section is to characterize the errorε.

We characterizeε by its mean valueEf and its
covariance matrix Cf (‘f’ stands for “final”). Ef
characterizes the bias of the system.Cf characterizes the
average variation ofP′r aroundPo

r + Ef. Notice that, if all
the errors in the system were unbiased,Ef would be zero.
However, we will see that calibration errors do introduce a
bias into the system.

8.1 Sensor errors

Assuming that the range sensor provides range
measurements in spherical coordinates,ρ(ϕ,θ), the sensor
error can be modeled by the standard deviation of errors on
the measured range,σρ, and on the scanning anglesσϕ and
σθ. This model assumes that the measurement error has
zero mean.

Typically, σρ is a function ofρ2, while σϕ andσθ are
constant [11]. With this model, the uncertaintyCs on the
location of a pointP of coordinatesPs = [xs ys zs], with
respect to a coordinate frame attached to the sensor,
corresponding to a measurementρ(ϕ,θ) is given by:

(17)

whereJs is the Jacobian of the transformationS(ρ, θ, φ)
from spherical coordinates to Cartesian coordinates.Ds is
the uncertainty matrix of the measurement in spherical
coordinates:

(18)

Because the measurement errors are of zero mean, the
error on the Cartesian pointPs is also of zero mean.
Therefore, the covariance matrixCs is sufficient to
characterize the error. It is assumed that the range
quantization noise is negligible compared to the
measurement noise. This implies that the range is large
compared to the resolution of the measurement. an
assumption that is necessary for the covariance model to
work. Other assumptions are that the mean range and
angular error is zero and the errors are small enough that
this linear approximation is acceptable.

Figure 8: Geometry for error modeling.
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8.2 Calibration errors

The coordinates ofP are transformed to a coordinate
system attached to the manipulator,Pr = [xr yr zr]. The
transformation between manipulator and robot coordinate
system,Tr

s is a fixed rigid transformation computed by
calibrating off-line the manipulator with respect to the
sensor.Tr

s is composed of a rotationR(θx,θy,θz) and a
translationt = [tx ty tz].

The error is afixed error, as opposed to the sensor error
which is stochastic in nature. More precisely, we can
assume the calibration errors are represented by fixed
errorsδθ{x,y,z} andδt{x,y,z} on the three angles of rotation
and the three components of the translation, respectively.
Denoting byδTr

s the transformation corresponding to the
error parameters, the relation between the coordinatesPr in
robot coordinates and the coordinatesPs in sensor
coordinates can be written as:

(19)

Since , the error term in robot coordinates
is  which has meanEr and covarianceCr given by:

(20)

In this expression,δRs
r is the rotation part ofδTs

r (upper
left 3x3 matrix). Assuming that the calibration errors are
small, the matrixδTr

s can be easily calculated as:

(21)

The assumptions inherent in this error modeling are
that the errors are small enough for the linear
approximation of δTs

r above to work and that the
calibration of the sensor remains fixed

8.3 Manipulator errors

Assuming that a target pointPr has been selected from
the sensor data, the manipulator is commanded to move to
Pr. Errors are introduced in the control of the manipulator
so that instead of reaching the ideal pointPr, the
manipulator moves to a pointP′r = Pr + ε. Assuming
position control, the errorε is due to the uncertainty on
sensing the position of each joint qi. More precisely, if each
joint positionθi (angle or linear displacement) is measured
with a standard deviationσi, and if the kinematics of the
manipulator is described by a relation of the type:Pr =
F(q1,.,qn), whereQ is the vector of joint positions, the error
ε onPr is of zero mean and of covariance matrixCt:

(22)

In this model,Jq is the Jacobian of the kinematic transfor-
mationF.
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The assumptions inherent in this error modeling of the
manipulator are that the errors on joint positions are
uncorrelated, the errors on joint positions are independent
of the configuration, and the errors are unbiased.

8.4 Compounding of errors on a single point

In the model of the error attributable to the
manipulator, the target pointPr is itself uncertain because
it comes from a sensor measurement. Therefore, we need to
compound (assuming that the errors introduced are
uncorrelated) the errors due to sensor noise and to
calibration. By combining the models developed above, we
end up withP′r = Po

r + εsc + ε, wherePo
r is the true

location of the point in space,εsc is the error due to the
combination of sensor noise and calibration error andε is
the error due to the manipulator.

Sinceε is of zero mean, the mean errorEf onP′r is the
mean ofεsc which was computed in the first section:

(23)

where Ps is the point computed from the measurement
(ρ,ϕ,θ).The covarianceCf of the errorεsc + ε is the sum of
the covariances onεsc andε:

(24)

A complete error model for locating the position of a
point in space has been presented. The error introduced on
the position of the point after a surface has been fit to the
sensed data has yet to be investigated.

9 Conclusion

Many internal details of the system operation have
been described and illustrated, from the collection of the
range image, through segmentation, to final model display.
The system as used by a human operator hides most of this
detail. The human operator initiates range image
acquisition, chooses a region of interest, and selects the
object models that exist in the scene. The planar and
quadric segmentation and the subsequent location of object
models in the scene are performed automatically. Located
models that truly correspond to objects in the scene are then
verified by the operator and inserted into the world model.
The world model contains a model of the robot, all
recognized objects and any available a priori information
about the worksite, so it is an excellent tool for planning
remote decontamination and decommissioning tasks.

In the near future, the complete system will be
integrated to DOE’s Dual Arm Work Module and then
mounted on the Rosie worksystem and an overhead
transporter. The mobility thus afforded will enable
collection of multiple range images of the same task space.
Future work will focus on means to effectively combine
that data into more detailed, more accurate and more
complete task space models.
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